梅花鹿马鹿最佳年龄和性别组合模型

李春义 郑兴涛 刘 彦 宋健华

(中国农业科学院特产研究所)

为了使东北梅花鹿和东北马鹿在现有驯养数量的基础上,获得最高产茸量和最大的经济收益,本文用系统分析法对其群体结构进行了研究。所得鹿群性别年龄组合的矩阵模型为,X_{t+1}=A·X_t-C,其中X_t为整个鹿群的状态;A是状态转移矩阵;AX_t为鹿群本身周转情况;C为人为控制量。所得以经济收益最大为目标的线性规划模型为,

 $Y_{max} = \sum B_m X_m + \sum B_n U_n + \sum B_P C_P$

$$s.t.\begin{cases} \sum X_{m} \leq N + \triangle N \\ \geq N - \triangle N \end{cases}$$
$$X = AX - C$$

结仔~~~

最佳

681.00

其中, X_m 为不同性别、年龄 组 鹿 数; B_m 是第 m 组 鹿 只带来的经济收益系 数; U_m 为不同性别、年龄组间转移时自然淘汰的鹿 数; B_n 是第 n 组淘汰 鹿 所带来的收益系数; C_P 为人为淘汰的仔母、老龄公、 母 鹿 数; B_P 为第 P 组淘汰 鹿 带来的收益系数; N 为一定的 鹿群总数; $\triangle N$ 为每年允许 鹿群总数的

变动数。

通过对12个典型梅花鹿饲养场和6个重点马鹿饲养场的调查,我们获得了大量的原始数据,经过整理将这些数据代入本模型,通过计算机的计算,得出了梅花鹿、马鹿最佳年龄、性别组合的比例(表1)。该比例与现行结构相比,公鹿在群体中的比例有了较大的提高(梅花鹿:70.54%→77.63%:马鹿:50→66.33%)。

若以1974年鹿只饲养管理成本及鹿产品的售价为准,则在一个1 000头鹿的鹿场中,最佳结构比现行结构的收益增加的数量见表2。从表2中可以看出,每1000头鹿增加的净收益:梅花鹿117 675.35元;马鹿127 080.64元。现仅吉林省就驯养梅花鹿8.6万头,马鹿0.3万头,若将这些鹿群调整至最佳性别。每位10 120 080.10元,马鹿381 241.92元。如果全国范围内采用最佳结构,且把饲养管理成本和鹿产品的售价均按1988年的数据核算,其经济收益将相当可观。

+

+ +

表1:

最佳鹿群性别、年龄组合与现行鹿群比较 (%)

鹿 构 母	育成母	成母公	成 公	锯		<u> </u>	六 	七	八	九	† ——	<u>:</u>	<u> </u>	· 三 公/母 ————
现行	29.46					70.54								2.39/
4.************************************	4 1.95	18.41 7.	43 7.04	6.74 6.	47 6.15 5	.97 5.70	5.61	5.44	4.90	4.74	4.48	4.11	2.80	3.47/
鹿 合 佳计	22.37					77.6	3							
现行	50.00 50.000										1:			
最成2.9	3 2.75	2.59 25.40 6	.35 5.9	75.735.3	3 5.17 4.	96 4.76	4.62	4.48 4	.17	4.00	3.84	3.46	2.70 1	.21 1.97/
电佳合 计	33.67			···		66.33								
表2:				1000头	电最佳结	构与现	宁结构	经济中	火益	的比率	Ż.			
种鹿结构		产茸量(kg)	年饲养成	本 (元)	净	收益 (元)		产投	比%		多收益	(元)
	现行	466.05		238 3	64.15	22	29 685	.85		1.97	72			
梅花鹿	最佳	598.99		251 6	28.80	34	47 361	.20		2.38	30		117	675.35
	现行	550.00		372 68	31.24	17	7 318	.76		1.47	' 5			 -
双 密														

127 080.64

304 399,40

1.806

376 920.60