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Single-cell transcriptome provides novel insights into antler stem cells,
a cell type capable of mammalian organ regeneration
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Abstract
Antler regeneration, a stem cell–based epimorphic process, has a potential as a valuable model for regenerative medicine. A pool
of antler stem cells (ASCs) for antler development is located in the antlerogenic periosteum (AP). However, whether this ASC
pool is homogenous or heterogeneous has not been fully evaluated. In this study, we produced a comprehensive transcriptome
dataset at the single-cell level for the ASCs based on the 10× Genomics platform (scRNA-seq). A total of 4565 ASCs were
sequenced and classified into a large cell cluster, indicating that the ASC resident in the AP are likely to be a homogeneous
population. The scRNA-seq data revealed that tumor-related genes were highly expressed in these homogeneous ASCs, i.e.,
TIMP1, TMSB10, LGALS1, FTH1, VIM, LOC110126017, and S100A4. Results of screening for stem cell markers suggest that
the ASCs may be considered as a special type of stem cell between embryonic (CD9) and adult (CD29, CD90, NPM1, and VIM)
stem cells. Our results provide the first comprehensive transcriptome analysis at the single-cell level for the ASCs and identified
only one major cell type resident in the AP and some key stem cell genes, which may hold the key to why antlers, the unique
mammalian organ, can fully regenerate once lost.
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Introduction

The BHoly Grail^ of modern regenerative medicine is to grow
back lost organs or appendages, which is known as
epimorphic regeneration (RJ 1983; Stocum 2006). Our current
knowledge of epimorphic regeneration is largely gained from
the studies on lower vertebrates (Gardiner et al. 2002).
Notably, these animals have the ability to reprogram pheno-
typically committed cells at the amputation plane toward an

embryonic-like cell phenotype (de-differentiation) and to form
a cone-shaped tissue mass, known as a blastema (Mescher
1996). Deer antlers are the only mammalian appendages
capable of full renewal and therefore offer a unique oppor-
tunity to explore how nature has solved the problem of
epimorphic regeneration in mammals (Goss 1995;
Kierdorf and Li 2009; Li et al. 2009; Li 2012). Recent
studies concluded that antler regeneration is a stem cell–
based epimorphic process (Kierdorf et al. 2007; Li et al.
2005, 2007a; Rolf et al. 2008) and has the potential for
development as a valuable model for biomedical research
and regenerative medicine. Revealing the mechanism un-
derlying this stem cell–based epimorphic regeneration in
mammals would undoubtedly place us in a better position
to promote tissue/organ regeneration in humans.

Antlers regenerate from the permanent cranial bony protu-
berances, known as pedicles. Growth of a pedicle itself is
initiated when a male deer approaches puberty. The origin is
a piece of periosteum, known as antlerogenic periosteum
(AP), which covers the frontal crest on the skull (Li 1994).
Removal of the AP prior to pedicle initiation stops pedicle and
antler growth, and transplantation of the AP autologously in-
duces ectopic pedicle and antler formation (Goss and Powel
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1985; Li et al. 2002; Li et al. 2007b). The initial discovery of
the AP (Hartwig and Schrudde 1974) has been hailed as a
Bhallmark^ event in antler research history (RJ 1983). The
AP tissue, ~ 2.5 cm in diameter and 2.5–3 mm in thickness,
contains around five million cells, which sustain the seasonal
renewal of the entire antlers throughout the deer’s life (Li et al.
2009). The potency of the AP cells has been investigated by
several laboratories (Berg et al. 2007; Li and Suttie 2001;
Price et al. 2005a; Rolf et al. 2008). The AP cells can be
induced in vitro to differentiate into chondrocytes, osteoblasts,
adipocytes, myoblasts, and neural-like cells. Therefore, AP
cells have been termed antler stem cells (ASCs) and are es-
sential for full regeneration of this unique mammalian organ
(Li et al. 2009).

Differences in cell type within any tissue are essential for
their biological states and function. Numerous studies in cell
biology have utilized single-cell sequencing by employing
new protocols of single-cell isolation to characterize function-
ally heterogeneous cells (Yu and Lin 2016). This study is the
first to apply single-cell sequencing technology to investigate
the ASCs through transcriptome (scRNA-seq) using the 10×
Genomics platform, a droplet-based system that enables 3′
messenger RNA (mRNA) digital counting for thousands of
single cells (Zheng et al. 2017).

Materials and methods

AP tissue sampling

The AP tissues were obtained from a 6-month-old male sika
deer immediately after slaughtering, according to the previous
protocol (Li and Suttie 2003). Briefly, to collect the AP tissue,
a crescent-shaped incision was made on the scalp skin 2 cm
medial to the frontal crest; the skin was separated from the
frontal bone to expose the AP. The AP was then peeled from
the underlying bone following the delineating incisions cut on
the periosteum and then placed into 50 ml of centrifuge tube
containing 20 ml cold DMEM (Gibco; Grand Island, USA)
plus 500 U/ml penicillin and 500 g/ml streptomycin
(Invitrogen, USA). All experimental processes were approved
by the Animal Ethics Committee of Institute of Special Wild
Economic Animals and Plants, Chinese Academy of
Agricultural Sciences (CAAS2017015).

Isolation of the AP cells

Isolation of the AP cells was carried out according to our
previous methodology (Li et al. 1999, 2012). Briefly, after
sampling, AP tissue was immediately cut into thin slices
(around 0.7 mm in thickness) using a custom-built tissue cut-
ter (Chu et al. 2017). These slices were digested in the DMEM
culture medium containing collagenase (150 units/ml) at 37

°C for 1–1.5 h to release cells, and the released cells were
cultured in a medium (DMEM + 10% FBS + 100 U/ml pen-
icillin + 100 mg/ml streptomycin). In order to increase cell
numbers to meet the requirement for subsequent construction
of the scRNA-seq library, the cells were trypsinized when
reaching confluence and then reseeded in T75 culture flasks
at a density of 5 × 105 cells/ml for one more round of
expansion.

Single-cell sequencing using Chromium™ platform

The scRNA-seq library was constructed using the
Chromium™ Controller and Chromium™ Single-Cell 3′
Reagent Version 1 Kit (10× Genomics, Pleasanton, CA)
to generate single-cell gel bead-in-emulsions (GEMs) as
previously described (Zheng et al. 2017). Briefly, about 5
× 105/ml (500/μl) suspended cells were obtained and
placed on the ice. In total, a 15-μl cellular suspension that
contained ~ 7500 cells was added to the Master Mix in the
tube strip well. The 100-μl Master Mix–containing cells,
40 μl single-cell 3′ gel beads, and 135 μl oil surfactant
solution were transferred to each well in the Chromium™
single-cell 3′ chip row. Subsequently, GEM-RT was per-
formed using Thermocycler (BioRad; 55 °C for 2 h, 85 °C
for 5 min, held at 4 °C). Post GEM-RT cleanup and cDNA
amplification was performed to isolate and amplify cDNA
for library construction. The samples were sequenced in
two lanes on the HiSeq 2500 in rapid run mode using a
paired end flow cell: Read1 98 cycles, Index1 14 cycles,
Index2 8 cycles, and Read2 10 cycles.

scRNA-seq data analysis

Cell Ranger Software Suite version 1.3.1 (http://support.
10xgenomics.com/) was used to perform sample de-
multiplexing, barcode processing, and single-cell 3′ gene
counting, as performed previously (Zheng et al. 2017). The
10-bp transcripts/unique molecular identifier (UMI) tags
were extracted from Read2. Cellranger mkfastq used
bcl2fastq v2.19 (https://support.illumina.com/) to
demultiplex raw base call files from Hiseq2500 sequencer
into sample-specific FASTQ files. Cellranger mkref was
run to produce a cellranger-compatible reference based
on both the Ovir.te1.0 genome sequences and the tran-
scriptome GTF file. These FASTQ files were aligned to
the reference with cellranger count that used an aligner
called STAR (Dobin et al. 2013).

The cells were selected based on the following criteria (Yan
et al. 2017): (1) the number of expressed genes (300–5000);
(2) the number of UMI counts (< 25,000); (3) the percentage
of mitochondrial genes (< 5%); and (4) the number of cells
expressed per gene (≥ 5). After normalizing expressed data by
NormalizeData function, dispersion of each gene against the

Funct Integr Genomics

http://support.10xgenomics.com
http://support.10xgenomics.com
https://support.illumina.com


mean expression level was plotted using FindVariableGenes
function (x.low.cutoff = 0.01, x.high.cutoff = 4, y.cutoff =
0.3), which was in Seurat R package version 2.2.1 (Butler
et al. 2018). A total of 2943 variable genes were selected
based on their plotting results (Fig. S1) and the amount of
variability was found to be explained by cell cycle genes.
The cell cycle scores were further generated by
CellCycleScoring function based on G2/M and S phase
markers, and then, these cores were used to scale cell-gene
expression data using ScaleData function. The standard devi-
ations of the principle components were plotted by
PCElbowPlot function to identify the true dimensionality of
a dataset (Fig. S2). Based on unsupervised graph-based
nearest neighbor clustering algorithm with different resolution
degrees, the scaled expression datasets were clustered using
FindClusters function with the first 30 principal components
according to the principal components analysis elbow plot.
The cluster results were presented using t-distributed stochas-
tic neighbor embedding (t-SNE)–based plots (Blondel et al.
2008). The FindAllMarkers function was used to find differ-
entially expressed genes with absolute log2 fold change > 1
and adjust P value < 0.001.

Immunofluorescent staining

The primary cultured ASCs were fixed with 4% paraformal-
dehyde for 30 min and blocked by incubation in 3% BSA
(0.1% Triton X-100 for NPM1) in PBS for 1 h at RT, followed
by incubation with the primary antibodies overnight at 4 °C.
The cells were incubated with secondary antibody for 30 min
followed by DAPI (blue) staining for visualization of nuclei.
The primary and secondary antibodies used in the study are
listed in Table S1. The primary antibodies were replaced by
rabbit or mouse IgG for the isotype-matched controls. All
images were captured under a fluorescent microscope
(EVOS, ThermoFisher, USA).

Flow cytometry analysis

The ASCs were incubated with the primary antibodies
overnight at 4 °C, and then the cells were stained with
FITC-conjugated secondary antibodies for another 1 h at
RT. Isotype-matched rabbit or mouse IgG was used as a
negative control. After three times of washes with cold
PBS, the cells were resuspended in 500 μl PBS. Flow cy-
tometry analysis was performed using FACSCalibur and
the results were analyzed using Cellquest software (BD
Biosciences, USA).

Data availability The raw single-cell RNA-seq data in fastq
format can be found at SRA under BioProject PRJNA416396.

Results

High-quality scRNA-seq data

A total of 252,818,309 read pairs were mapped to 14,993
genes, which were found to be expressed in the 4731 sorted
individual ASCs. This was equivalent to an average of
53,438 mapped read pairs per cell, which is reportedly
sufficient for an accurate analysis by single-cell 3′ solution
(Yan et al. 2017). The median gene number and UMI
counts were 2568 and 10,309 respectively. The results of
detailed statistical analysis of the scRNA-seq data and the
sequenced cells are summarized in Table S2 and S3
respectively.

A steep drop-off of barcode UMI counts was indicative
of good separation of the cell-associated barcodes from the
empty droplets (Fig. 1a). The number of genes (Fig. 1b)
and percentage of mitochondrial genes (Fig. 1c) against the
corresponding UMI counts per cell were plotted respec-
tively to exclude outlier cells as potential multi-cell drop-
lets. Based on the threshold criteria (see Methods), we
filtered out 116 cells and 1820 genes. Altogether, 4615
singular cells and 13,173 genes were retained for further
analysis.

A large cell cluster across the ASCs

The graph-based nearest neighbor clustering algorithm that
did not rely on known markers uncovered two cell clusters
from 4615 high-quality cells with a resolution degree of 0.1
(Fig. 2a). We further defined groups of genes (absolute log2
fold change > 1 and adjust P value < 0.001), which allowed
classification of these cells into two distinct cell clusters (Fig.
2b). We found no upregulated genes in the small cluster (50
cells). However, a high proportion of downregulated mito-
chondrial genes (i.e., MT-COX1, MT-COX2, MT-COX3,
MT-ND2, MT-ND1, and MT-CYTB) were represented,
strongly suggesting that the small cluster could be contam-
inated by debris of the ASCs. We also found the ASCs in
the large cell cluster (4565 cells) expressed high levels of
extracellular matrix proteins, such as collagen family. In
particular, these genes (i .e . , COL1A1, COL1A2,
COL5A1, COL5A2, SPARC, and FN1) were typically ap-
plied to measure differentiated states from mesenchymal
stem cell to osteoblast, osteoprogenitor, and chondrogene-
sis. Based on the resolution degree of 0.2, the large cell
cluster was again separated into two clusters with 2404 and
2161 cells respectively (Fig. 2c), but only four genes had
values of absolute log2 fold change > 1 and < 2 (ACTA2,
THBS1, TNC, and MYL9) (Fig. 2d), indicating that the
ASC residents in the AP are likely to represent a homoge-
neous population.
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Highly expressed genes across the ASCs

A total of 35 genes were found to be highly and commonly
expressed in cells of the large cell cluster (at least 20 UMIs);
these were further sorted based on their expression levels (Fig.
3a and Table S4). Of the selected 35 genes, the first seven, i.e.,
metalloproteinase inhibitor 1 (TIMP1), thymosin beta 10
(TMSB10), galectin-1 (LGALS1), ferritinheavy chain
(FTH1), vimentin (VIM), ferritin light chain-like genes
(LOC110126017), and S100A4, were found to be expressed

over 50 UMIs. Almost all of the ASCs expressed these genes
above the level of 10 UMIs. Notably, 98% and 90% of the
ASCs expressed TMSB10 gene above the level of 30 and 50
UMIs respectively. The expression levels of the TMSB10,
LGALS1 (Fig. 3b), and VIM genes (refer to Fig. 4a) were
further confirmed using immunofluorescent staining. Of the
selected 35 genes, 25 (71%) were found to be involved in the
protein-protein interaction network in the STRING v10.5
(Fig. 3c), suggesting that they may come together to accom-
plish a particular biological function within the ASCs.

Fig. 1 Quality metrics of the ASC single-cell transcriptomes using 10×
Genomics. a Barcode rank plot. In the plot, a steep drop-off is indicative
of good separation between the cell-associated barcodes and the barcodes
associated with empty partitions. b Plot between the numbers of genes
and UMI counts per cell. c Plot of mitochondria UMIs and UMI counts

per cell. Cells (4615 in total) and UMIs (25,000) were selected for
downstream analysis (red dashed lines). Cells with number of genes <
5000 and > 300, UMI counts < 25,000, and the percentage of
mitochondrial genes < 5% were selected for downstream analysis (red
dashed lines)
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Expression of stem cell markers

In order to investigate expression status of stem cell
markers for the ASCs in the large cell cluster, we selected
16 marker genes from the scRNA-seq data based on two
criteria: (1) expressed in at least one UMI count and (2)

expressed in over 3% of the ASCs. These 16 marker
genes were then classified into four types of stem cell
markers based on the definition for each type from the
literature: (1) mesenchymal stem cell markers (10;
CD29, CD73, CD105, CD90, fibronectin (FN1), VIM,
nucleophosmin (NPM1), PDGFRA, CD44, and CD49);

Fig. 2 Unsupervised graph-based nearest neighbor clustering analysis of
the ASCs. a t-SNE projection of single cells, colored by two inferred ASC
clusters based on the resolution degree of 0.1. b A normalized expression
(centered) of differentially expressed genes (rows) from each of two
clusters (columns) is shown in a heat map. Gene symbols are

represented at the right. c t-SNE projection of single cells, colored by
three inferred ASC clusters based on the resolution degree of 0.2. d
Four genes that have values of absolute log2 fold change > 1 and < 2
are labeled on t-SNE plots
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(2) embryonic stem cell markers (4; CD9, SMAD2, MYC,
and TBX3); (3) neural stem cell markers (3; ID2, nestin
(NES), and VIM); and (4) cancer stem cell markers (4;
CD44, MYC, CD90, and CD105) (Fig. 4a). When the
expression level was set at nUMI > 5, four mesenchymal
(CD90, CD29, VIM, and NPM1) and one embryonic stem
cell marker genes (CD9) were found to be expressed in
over 40% of the ASCs (Fig. 4b). More significantly, VIM,
known as a neural stem cell marker (Bramanti et al.
2010), was highly expressed in almost all of the ASCs.

High expression levels for these five stem cell marker
genes (CD9, CD90, CD29, VIM, and NPM1) were fur-
ther confirmed using immunofluorescent staining (Fig.
5a). In addition, the immunofluorescent staining results
provided extra information over the expression level

study. For example, one of the NPM1 functions is to
act on genomic stability and DNA repair (Lindstrom
2011), and in our results, distinct dots were clearly ev-
ident within and around the nucleus of the ASCs, sug-
gesting that it is a nucleus protein. Also as expected,
VIM, a major cytoskeletal protein of mesenchymal cells
(Colucci-Guyon et al. 1994; Goldman et al. 1996), was
observed to be in a distinct form outside of nuclei. To
further investigate the proportion of positive cells for
each of these five marker genes, FACS analysis was
performed and the results showed that CD9+, CD90+,
CD29+, VIM+, and NPM1+ were positive in 91.1%,
93.2%, 92.8%, 98.4%, and 94.5% of ASCs respectively
(Fig. 5b), which were concordant with the results of
scRNA-seq data analysis.

Fig. 3 Highly expressed genes in the scRNA-seq data. a Top 35 genes
that were expressed at ≥ 20 UMI averaged across all the ASCs (bar plot).
Percentage of cells based on ≥ 10, 30, and 50 UMIs per cell respectively
(line plot). b Immunostaining of the ASCs using anti-TMSB10 and anti-

LGALS1. DAPI staining was used for nuclei detection. IgG staining was
used as negative control. Scale bar: 200 μm. c Protein-protein interaction
network between 25 of the top 35 genes based on STRING v10.5 (string-
db.org) searching with medium confidence (0.4)
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Discussion

Single-cell RNA sequencing (scRNA-seq) approaches have
become increasingly popular providing insights into various
aspects of developmental and stem cell biology (Kumar et al.
2017). In the present study, using the scRNA-seq technology
based on the 10× Genomics platform, we provided an initial
high-resolution picture of molecular characterization for the
ASCs (4615 cells including 13,173 genes).

Several highly expressed genes, such as S100A4,
LGALS1, and TMSB10, have been reported previously as
being related to the development of the AP tissues/cells (Li
et al. 2012; Park et al. 2004; Wang et al. 2017), and TMSB10

is also highly expressed in growing antlers (Lord et al. 2004;
Zhang et al. 2018). These highly expressed genes are report-
edly tumor-related factors. S100A4 promotes cell prolifera-
tion and tumor growth (Sherbet 2009). The downregulation
of S100A4 expression suppresses cell proliferation in many
cancer cells (Huang et al. 2012; Ma et al. 2010). LGALS1
modulates the immune response (Liu 2005; Rabinovich
et al. 2007) andmay contribute to immune privilege in tumors.
TMSB10 plays important roles in the progression and metas-
tasis of various tumors (Santelli et al. 1999; Sribenja et al.
2009; Zhang et al. 2017). The dysregulated activity of
TIMP1 has been implicated in tumors (Kim et al. 2012).
Methylation of VIM has been established as a biomarker of

Fig. 4 ASC screening results using the currently available stem cell
markers. These cells were labeled by 16 stem cell markers respectively,
and the label threshold was set to meet a criterion that a marker must be
expressed by more than 3% ASCs and with at least one UMI count. a
Venn diagram of the 16 individual stem cell markers across the four types

of stem cell marker, including 10 mesenchymal stem cell markers, four
embryonic stem cell markers, three neural stem cell markers, and five
cancer stem cell markers. b Expression abundance of the 16 individual
stem cell markers based on UMI counts ≥ 1, 3, and 5
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tumors (Jung et al. 2011). Both FTH1 and LOC110126017
(ferritin light chain-like) encode proteins that play important
roles in iron storage and homeostasis. It is known that iron has
a role in the tumor microenvironment and in metastasis and
can contribute to both tumor initiation and tumor growth
(Torti and Torti 2013). Although these tumor-related genes
are highly expressed in the ASCs, these cells do not become
cancerous during antler formation despite an astonishing rate
of proliferation and differentiation, which is genuinely impres-
sive and worth further exploration.

Recently, it has been reported that the ASCs express both
mesenchymal stem cell markers, such as STRO-1 and CD105,
and embryonic stem cell markers such as CD9 and MYC (Li
et al. 2009; Rolf et al. 2008; Seo et al. 2014). Surprisingly, the
ASCs were also reported to express some key embryonic stem
cell marker genes, such as Oct4, SOX2, and NANOG (Li et al.
2009; Seo et al. 2014). However, we failed to detect the ex-
pression of these key embryonic marker genes through the
scRNA-seq in this study. Interestingly, expressed NANOG

in the ASCs was found as a pseudogene in one of our previous
studies (Wang et al. 2016). In addition, the ASCs have to be
considered to be of neural crest origin (Kierdorf et al. 2007; Li
and Suttie 2001; Price et al. 2005b), with a direct evidence
being the detection of the mRNAs for several neural crest cell
markers in the ASCs using RT-PCR (Mount et al. 2006). The
neural crest cell population is an embryonic cell population
and these cells might represent some kind of Bembryonic
remnant^ comprising pluripotent cells left over from the early
embryo (Li et al. 2009). Our results also showed that almost
all of the ASCs highly expressed the VIM gene, a marker that
appears at the earliest stage of neural tube development
(Houle and Fedoroff 1983), which further supports the neural
crest origin of the AP cells. Overall, despite the lack of ex-
pression of key embryonic marker genes in this study, the
ASC may still be considered as a unique type of stem cell that
has biological attributes derived from embryonic (CD9), mes-
enchymal (CD29, CD90, NPM1, and VIM), and neural stem
cells (VIM). Our findings in this study strongly support the

Fig. 5 Immunostaining and FACS analysis of the ASCs. a
Immunostaining of ASCs using anti-CD9, anti-CD29, anti-CD90, anti-
VIM, and anti-NPM1 antibodies. DAPI staining was used for detection of

nuclei. Scale bar: 200 μm. b FACS analysis was performed using each of
these five antibodies. Values show the intensity of the indicated antigen
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view that the annual antler regeneration represents a stem cell–
based process.

The scRNA-seq studies have thus far led to the discovery
of novel cell types and provided insights into regulatory net-
works during development (Liu and Trapnell 2016). Using
this powerful approach, we have successfully identified only
one major type of ASC resident in the AP. It is understandable
that, for such a small piece of tissue (around 2.5 cm in diam-
eter and 2 mm in thickness) to initiate a large mammalian
appendage (up to 15 kg) within 2 to 3 months of time, this
limited number of cells (around five million) must uniformly
possess stem cell attributes, such as almost unlimited prolifer-
ation potential. Whatever it is, the results from the present
study provide a useful source for further investigation at mo-
lecular level of deer antler renewal, the only stem cell–based
mammalian organ regeneration.
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