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Objective: This experiment was conducted to investigate the effects of chromium picolinate
(CrP) on fat deposition, genetic expression and enzymatic activity of lipid metabolism-related
enzymes.

Methods: Two hundred forty one-day-old Ross broilers were randomly divided into 5 groups
with 4 replicates per group and 12 Ross broiler chicks per replicate. The normal control group
was fed a basal diet, and the other groups fed the same basal diet supplemented with 0.1, 0.2,
0.4, and 0.8 mg/kg CrP respectively. The experiment lasted for 21 days.

Results: Added CrP in the basal diet decreased the abdominal fat, had no effects on subcu-
taneous fat thickness and inter-muscular fat width; 0.2 mg/kg CrP significantly decreased the
fatty acid synthase (FAS) enzymatic (p<0.05); acetyl-CoA carboxylase (ACC) enzymatic
activity decreased in all CrP groups (p<0.05); hormone-sensitive lipase (HSL) enzymatic
activity also decreased, but the change was not significant (p>0.05); 0.4 mg/kg CrP group
significantly decreased the lipoprotein lipase (LPL) enzymatic activity. FAS mRNA expression
increased in all experimental groups, and the LPL mRNA expression significantly increased
in all experimental groups (p<0.05), but not 0.2 mg/kg CrP group.

Conclusion: The results indicated that adding CrP in basal diet decreased the abdominal fat
percentage, had no effects on subcutaneous fat thickness and inter-muscular fat width, de-
creased the enzymatic activity of FAS, ACC, LPL and HSL and increased the genetic expres-
sion levels of FAS and LPL.
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Carboxylase; Hormone-sensitive Lipase; Lipoprotein Lipase; Enzymatic Activity; mRNA
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INTRODUCTION

Chromium (Cr) exists in various oxidation states (-2 to +6) [1], +3 and +6 are the most natu-
rally states in environment [2]. Hexavalent Cr is more toxic than trivalent [3-5] when measured
for genotoxicity, cytotoxicity, and carcinogenicity [6-8]. Trivalent Cr is the most stable form,
and have less toxicity. So the Hexavalent Cr is usually used for toxicologic study, and the
trivalent Cr is usually used as a nutrient element. Chromium is an integral component of
the glucose tolerance factor [9]. The low molecular weight chromium binding substance was
known as chromodulin, is the most viable candidate for the biologically active form of Cr**
which could stimulate the activity of the insulin receptor protein tyrosine kinase [10]. Chro-
modulin and its synthetic analogue increase the activity of tyrosine kinase 3 to 8 fold [11].

Previous studies indicated that organic Cr is absorbed more efficiently [12], and has a
higher bioavailability than inorganic Cr [13]. Different organic forms of Cr would be ex-
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pected to have different bioavailabilities [12,14]. Published
studies describing the effects of organic Cr on broilers, includ-
ing increasing immune response and alleviating the negative
effects of heat stress [15,16], increasing the weight of pectoral
muscles [17], decreasing body fat deposition in broilers [18].
In addition, supplement with Cr alter lipid and glucose me-
tabolism [19-21], and growth performance in pigs [22]. Cr
improved glucose tolerance [23,24], decreased total choles-
terol and low-density lipoprotein levels [25,26]. The previous
studies indicated that Cr alter lipid and glucose metabolism,
but the underlying mechanism is unknown.

Therefore, this study was conducted to investigate the effects
of chromium picolinate (CrP) on percentages of abdominal,
subcutaneous and inter-muscular fat, enzyme activities and
mRNA expression in Ross broilers, via adding CrP in dietary
to reveal the mechanism underlying the effects of Cr on lipid
metabolism.

MATERIALS AND METHODS

Animals, diets, and treatments

A total of 240 one-day-old Ross broilers were randomly di-
vided into 5 groups, and each group containing 4 replicates of
12 Ross broilers. The normal control group was fed the basal
diet, the other groups fed the same basal diet supplemented
with 0.1, 0.2, 0.4, 0.8 mg/kg CrP. The experiment lasted for 21
days. CrP in this experiment was supplied by Shaanxi Pioneer
Biotech Co., Ltd. The commodity’s CAS No.: 14639-25-9;
Model No.: PW-567, CrP content: 98%. The corn-soybean meal
basal diet was used in this experiment, in accordance with the
National Research Council (NRC [27]). Standard for broilers
nutrient requirements and Chinese Feeding Standard for broil-
ers. Table 1 lists the composition and nutrient levels of the
basal diet. The Cr concentration in basal diets is 0.33 mg/kg,
just same as report by Padmavathi [28].

Feeding managements

All experimental utensils and surroundings were disinfected
before initiating the experiment. During the experiment, feed
and water were given ad libitum. During days 1 to 3, the indoor
temperature was maintained at 33°C to 35°C and decreased
gradually reach to 24°C after 14 days. Natural ventilation and
humidity was maintained at 55% to 60%. During days 1 to 3,
the broilers were exposed to light for 24 hours, and after three
days, the broilers were exposed to light for 20 to 23 hours.

Sample collection

On days 21, the experimental Ross broilers starved for 12 hours,
then two Ross broilers were selected from each replicates and
killed at the neck. The abdominal fat was subsequently sepa-
rated and weighed, and the subcutaneous and inter-muscular
fat width were measured. Liver and pectoralis were collected
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Table 1. Composition of the basal diet

Items

Ingredient (%)
Comn 58.00
Soybean meal 30.50
Fish meal 3.50
Soybean oil 2.50
Wheat bran 2.00
Shell powder 1.50
CaHPO, 1.10
Nacl 0.25
Met 0.15
Premix” 0.50
Total 100.00

Nutrient levels
ME (MJ/kg) 1235
CP 20.82
Ca 0.99
TP 0.67
AP 0.44
Lys 1.15
Met+Cys 0.83

ME, metabolizable energy; CP, crude protein; TP, total phosphorus; AP, available
phosphorous.

"The premix contained in per kilogram of the diet: vitamins A, 10,000 1U; vitamins
B,, 1.75 mg; vitamins B,, 4.25 mg; vitamins B¢, 3.25 mg; vitamins B,,, 0.025 mg;
vitamins D, 2,500 IU; vitamins E, 15.00 mg; vitamins K;, 1.75 mg; pantothenic
acid, 15.00 mg; nicotinic acid, 2.00 mg; biotin, 0.30 mg; choline, 1,100 mg; folic
acid, 0.75 mg; Mn, 86 mg; Zn, 100.00 mg; Fe, 100.00 mg; Cu, 8.00 mg; I, 0.40
mg; Se, 0.20 mg.

and placed into liquid nitrogen and then stored at -80°C to be
measured (The study protocol conforms to the guide for the
use of laboratory animals form the College of Agriculture,
Guangdong Ocean University).

Fat deposition, subcutaneous fat thickness, inter-
muscular fat width measurement

Abdominal fat percentage
= (Abdominal fat weight/body weight)x100%

Subcutaneous fat thickness: An incision was made at the
former end of the caudal vertebra along the middle line of the
back. The incised skin corner (including the skin) was mea-
sured at different positions with Vernier calipers to obtain three
numbers. The averaged number is the subcutaneous fat thick-
ness.

Inter-muscular fat width: The inter-muscular fat width was
measured at three different position from the pectoral muscle
major border to the sternum end, and the averaged number
is the inter-muscular fat width.

Enzymatic activity of FAS, ACC, LPL, and HSL
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Approximately 50 to 100 mg of liver, or pectoralis were placed
into tubes. Lysis buffer (50 uM Tris with 50 pM Nal, pH was
adjusted to 7.5 with HCI) was added to the tube and the con-
tents were ground down by the cell/tissue crusher. 12,000 g
centrifuged for 10 min at 4°C. The supernatant was used to
measure the enzymatic activity of fatty acid synthase (FAS),
acetyl-CoA carboxylase (ACC), hormone-sensitive lipase (HSL),
and lipoprotein lipase (LPL) by enzyme-linked immunosor-
bent assay (ELISA) kits according to the instructions provided
by the manufacturer (Shanghai Jiang Lai Biotechnology Co.,
Ltd, Shanghai, China). Briefly, 50 pL supernatant samples was
added to the coated plate, incubated at 37°C for 1 hour, then
washed three times with phosphate-buffered saline (PBS) (each
5 min); 50 pL diluted enzyme-labeled antibody was added to
the plate, incubated at 37°C for 1 hour, then washed three times
with PBS; 100 uL. TMB was added and incubated at 37°C for
20 min; terminated the reaction with 50 pL. 2 M H,SO,, and
measured the optical delnsity (OD) at 450 nm.

RNA extraction, reverse transcription and quantitative
real-time polymerase chain reaction analysis
Approximately 50 to 100 mg of liver or fat were placed into
RNase-free tubes. Trizol (1 mL) (Ambion, Austin, TX, USA)
was added to the tube, ground down the tissues with a cell/
tissue grinder, then added 200 uL chloroform, and centrifuged
at 12,000 g for 10 min at 4°C; transferred the supernatant into
a new RNase-free tube, and added 500 uL isopropanol, then
centrifuged at 12,000 g for 10 min at 4°C; removed the su-
pernatant, washed the precipitate two times with 1 mL 75%
ethyl alcohol and centrifuged at 12,000 g for 10 min at 4°C; re-
suspended the precipitate with DEPC water. Quantified the
concentration by measuring the absorbance at 260 and 280
nm. The RNA was subjected to a quantitative real-time poly-
merase chain reaction (QRT-PCR) using the PrimeScript IT 1 st
strand cDNA Synthesis Kit (Takara Bio, Dalian, China). The
expression levels of FAS and LPL were evaluated by qRT-PCR
analysis using the Fast Start Universal SYBR Green Master kit
(Roche, Basel, Switzerland). The reaction system was as fol-
lows: 12.5 pL FastStart Universal SYBR Green Master (ROX),
1 puL cDNA, 1 pL upstream primer, 1 uL. downstream primer,
and 9.5 uL. ddH20. Reaction conditions: 50°C for 2 min fol-
lowed by 40 cycles at 95°C for 10 min, 95°C for 15 s and 60°C
for 1 min. Each sample consisted of three replicates and three
internal references. The sequences of FAS, LPL, and glyceral-
dehyde-3-phosphate dehydrogenase of broilers were obtained
from the GenBank. Primer 5 was used to design the primers
(Table 2), and synthesized by Sangon Biotech (Shanghai, China)
Co., Ltd.

Statistical analysis
Results were expressed as meanststandard error. Data were
analyzed by using statistical software package SPSS 12.0 (SPSS

AJAS

Table 2. The primer sequences of FAS, LPL, and GAPDH

Gene Sequences (5'-3") Accession No. Pr(:::)uct

FAS CAATGGACTTCATGCCTCGGT NM_205155.2 119
GCTGGGTACTGGAAGACAAACA

LPL GTGACCAAGGTAGACCAGCC NM_205282.1 92
GAAGAGACTTCAGGCAGCGT

GAPDH ATGGCATCCAAGGAGTGA XM_010210168.1 141
GGGAGACAGAAGGGAACAG

FAS, fatty acid synthase; LPL, lipoprotein lipase; GAPDH, glyceraldehyde-3-phos-
phate dehydrogenase.

Inc., Chicago, IL, USA). Groups were compared by one-way
analysis of variance followed by the least significant difference
test. * p<0.05 was considered significant, and ** p<0.01 was
considered markedly significant.

RESULTS

Effects of CrP on fat deposition of Ross broilers
Compared to normal control group, 0.4 mg/kg CrP group sig-
nificantly decreased the abdominal fat percentage (p<0.05),
while the rest of the experimental groups only showed a slight
reduction (p>0.05) (Figure 1A). There was no significant change
between the experimental and normal control group on the
subcutaneous fat width (p>0.05) (Figure 1B). The changes in
the inter-muscular fat width consistent with the observed in
abdominal fat percentage, 0.4 mg/kg CrP decreased the most,
but there was no significant change (p>0.05) (Figure 1C).

Effects of CrP on the enzymatic activities of FAS, ACC,
LPL, and HSL of Ross broilers

As shown in Figure 2, the FAS activity of all experimental
groups decreased compared with the normal control group
(p>0.05), and 0.2 mg/kg CrP significantly decreased the ac-
tivity of FAS (p<0.05) (Figure 2A). The enzymatic activity of
ACC was significantly decreased in all experimental groups
(p<0.05) (Figure 2B). HSL activity was also decreased, but the
differences were not significant (p>0.05) (Figure 2C). Sup-
plementing with 0.4 mg/kg CrP significantly decreased the
LPL activity compare to normal control group (p<0.05) (Fig-
ure 2D).

Effects of CrP on mRNA expression levels of FAS and
LPL in Ross Broilers

Basal diets added with CrP influenced expression levels of FAS
and LPL in Ross broilers of 1 to 21 days. Compared to the nor-
mal control group, expression levels of FAS increased in all the
experimental groups (Figure 3A). LPL expression levels were
significantly decreased (p<0.05) in 0.2 mg/kg CrP group, while
it increased in the rest of the experimental groups (Figure 3B).
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Figure 1. (A) The abdominal fat percentage of Ross broilers, abdominal fat weight/body weight (n = 8); (B) an incision was made at the former end of the caudal vertebra
along the middle line of the back. The incised skin comer (including the skin) was measured at different positions with Vernier calipers to obtain three numbers. The
averaged number is the subcutaneous fat thickness (n = 8); (C) the inter-muscular fat width was measured at three different position from the pectoral muscle major border

to the sternum end, and the averaged number is the inter-muscular fat width (n =
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Figure 2. (A), (B), (C), (D) were the relative activity of FAS, ACC, HSL, and LPL enzyme respectively (100% of control). FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase;

HSL, hormone-sensitive lipase; LPL, lipoprotein lipase.

DISCUSSION

Studies have shown that Cr can improve glycometabolism and
lipid metabolism in diabetes mellitus [29-31], due to its role
in glucose/insulin metabolism [32]. Previous studies also in-
dicated that Cr could affect lipid metabolism and reduce body
fat deposition of broilers [18,28,33]. Abdominal fat tissue
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grows faster compared with other fat tissues in poultry [34].
And the abdominal fat is a reliable parameter for judging the
total body fat content because it is linked directly to total body
fat content in avian species [35,36]. Our results showed that
abdominal fat percentage tended to be reduced in all experi-
mental groups (p>0.05), and the experimental group with 0.4
mg/kg Cr had the most significant reduction (p<0.05). Basal
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Figure 3. (A) the relative mRNA expression level of FAS; (B) the relative mRNA expression level of LPL (100% of control). FAS, fatty acid synthase; LPL, lipoprotein lipase.

diets supplemented with Cr had not effects on the subcuta-
neous fat thickness and the inter-muscle fat width of Ross
broilers.

FAS is the rate-limiting enzyme in the last step of de novo
synthesis of the long-chain fatty acids in animals, catalyzes
Acetyl-CoA and Maloney-CoA to synthesize the fatty acid
[37]. The liver and fat tissue is enriched with FAS, but more
than 90% fatty acid is synthesized in the liver of the broiler,
and the fat tissue just has a storage function. Therefore, the
experiment reported here used liver to study FAS activity. The
results showed that Cr decreased FAS activity in all experi-
mental groups, and this is consistent with the previous study
that clenbuterol decrease lipogenesis in the liver by decreas-
ing FAS activity, consequently affecting the abdominal fat pad
weight [38]. The ACC is a biotin-dependent enzyme that cat-
alyzes the carboxylation of acetyl-CoA to produce malonyl-
CoA substrate for the biosynthesis of fatty acids [39]. Due to
its unique position in lipid metabolism, inhibition of ACCs
has been proposed to reduce lipogenesis and favor lipid oxi-
dation [40]. Our results suggested that the liver ACC activity
decreased in all experimental groups, and 0.4 mg/kg CrP re-
duced the most. HSL is controlled by many hormones, so it
is also called hormone-sensitive lipase or fat-hormone sensi-
tive enzyme. HSL hydrolyzes fat into non-esterified fatty acids
and glycerin by joint function of double-glyceridase and single-
glyceridase. However, the hydrolytic activity of HSL is much
lower than the other enzymes, making it the rate-limiting en-
zyme in fat hydrolytic processes [41]. Our study found that
HSL activity reduced in all experimental groups (p>0.05). LPL
is a key enzyme of fat deposition in animal tissues. It is a rate-
limiting enzyme for the catalysis of triglycerides into glycerin
and non-esterified fatty acids [42]. The products of LPL catal-
ysis provide raw material for fat synthesis and play an important
role in fat metabolism and transportation. Our results suggested
that CrP tended to decreased the LPL activity in experimen-

tal groups, especially for 0.4 mg/kg group which significantly
decreased the LPL activity. All the results showed that sup-
plemented with CrP in basal diets had certain effects on the
enzymatic activity of fat deposition: including reduced FAS
activity in the liver, significantly reduced ACC activity in the
liver, reduced HSL activity in abdominal fat and reduced the
LPL activity in pectorals. Therefore, we thought that CrP
decreased fat deposition through decreasing the enzymatic
activities of FAS, ACC, HSL, and LPL. Though HSL activity
was also reduced, it was not significant compared to the former.

Supplemented with CrP in the basal diets significantly de-
creased the enzyme activity involved in lipid metabolism. Then,
whether or not supplemented with CrP would influence the
gene involved in lipid metabolism. Our results showed that
the expression of FAS significantly increased in 0.2 mg/kg and
0.8 mg/kg groups, and the expression of LPL were significantly
decreased in 0.2 mg/kg group (p<0.05), while it significantly
increased in 0.1 mg/kg and 0.4 mg/kg group (p<0.05). Though
we had not concluded the effects of Cr on the mRNA expres-
sion of FAS and LPL in Ross broilers were correlated with
dosage, but we could conclude a series of conclusion when
we linked the mRNA expression of FAS and LPL with the
enzymatic activity. The regression analysis of FAS activity and
FAS gene expression showed that the intercept is 53.80 and the
variable is —0.38 (raw data analysis). The regression analysis
indicated that the expression of FAS would increase along with
the decrease of FAS activity. Therefore, we concluded that sup-
plement Cr could decrease FAS activity, and the low enzymatic
activity of FAS in turn stimulate the organism to produce more
FAS to meet its needs, lead to the increase of the expression
of FAS. However, there was no obvious regularity on the LPL
enzyme activity and mRNA expression.

CONCLUSION
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Basal diets with CrP reduced the abdominal fat percentage
and subcutaneous fat thickness of Ross broilers of 1 to 21 days,
decreased the enzymatic activities of FAS, ACC, LPL, and HSL
activity, increased the expression of FAS gene in Ross broilers.
And we thought that Cr could decrease FAS activity, and the
low enzymatic activity of FAS in turn stimulate the organism
to produce more FAS to meet its needs. However, these changes
did not appear to be related to the Cr dosage.
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